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 The Recycler is sensitive to induced magnetic and electric fields caused by 
ramping of the Main Injector which occupies the same tunnel.  Although it is impossible 
to know the fields everywhere, we can attempt to estimate several effects of these time 
dependent fields.  Some of the error field must be the field due to net current flowing in 
the cable trays.  Other fields will be due to saturation of the main injector magnets, which 
will have a very different time dependence.  In any case the fields can be described by a 
vector potential, with only an s component Ås(s,x,z,t,), so long as there are no currents 
linking the beam.  (We use coordinates (s,x,z) where s is arc length along the Recycler 
central orbit, x is in the outward direction and z is in the vertical.)  We can expand the 
potential in a power series in x and z where all coefficients depend on both s and t. 
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Α0 is the flux per meter linking the orbit, Bx and Bz are components of the magnetic field 
at the central orbit, while B' and B'r are the normal and skew (or rotated) magnetic field 
gradients.  For now we will ignore higher order multipoles, but they can be added in, if 
necessary. 
 
Orbit Lengths: 
 
 We will assume that the time scales of all variations are long compared to the 
periods of betatron oscillations.  Then the principal effects of the new fields can be 
inferred by looking at the new terms one by one. 
 The first term gives a local accelerating electric field.  The s integral of this field 
gives the energy gain per turn.  As the field pulses to its maximum, the beam energy 
changes by an amount  

∆ E = − q β ∆Φ= − q β ∆ A 0 ds∫    or   
∆ P 
P 

= − δ Bw
B ρ  (2) 

where ∆A0 is the change in A0, which is equivalent (flux per meter) to the product of a 
field δB and a width w.  Φ is the total change in flux linking the orbit.  This changes the 
radius and circumference of the orbit by 
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 The second term changes the net bending of the beam.  Even without detailed 
knowledge of the dependence of the error field on s, we can make some observations 
about  the effects on the beam.  The fields Bx and Bz will cause a change in the 
equilibrium orbit in the x and z direction.  Ignoring for a moment the change in energy  
(2) then there will be a mean shift of the orbit in the x direction which depends on the 
mean field.  Other changes will depend mostly on harmonics of the field near νx .  This 
mean shift changes the length of the orbit of particles of momentum P0, the momentum 
of the unperturbed central orbit.  Then using Courant & Snyder's method of harmonic 
analysis, we find 

x = − β x 
R 
ν β x 

∆ B 
B ρ  (4) 

to be the shift due to a uniform field.  The change in orbit length due to x is given by  

∆ C = Ω xds ∫ ,    Ω = 
B 0 
B ρ  (5) 

where B0 is the bending field pattern is the unperturbed ring.  There are several cases 
worth mentioning.  If ∆B is uniform then  

∆ C 
C 

≅ − R 
ν x 

2 
∆ B 
B ρ = − R 

ρ 
∆ B 
B d 

1 
ν x 

2  (6) 

where Bd and ρ are the field and orbit curvature in the dipoles.  Another case of interest 
is the situation in which the error field is only in the dipoles.  Since the s dependence is 
the same as for the main bending field, the change can be easily calculated 
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Cases of differing field changes in dipoles and elsewhere can be concocted as linear 
combinations of (5) and (6) 
 The radial field Bx will cause closed orbit deviations in the vertical closed orbit, 
but these will not change the orbit length in first order since the undisturbed orbit has no 
curvature (see (4)).   
 Then the major problem seems to be the orbit length change.  We can compare the 
shifts by acceleration and bending as the ratio of (3) to (6) or (7) 

Ratio ≅ δ B 
∆ B 

w 
ρ   

since νx2 is about equal to γ t2.  Now the fields must be of the same order, but w must be 
at most about 1 meter, much smaller that the radius of curvature, so the acceleration shift 
must be negligible.  
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Tune Shifts: 
 
There are two sources of tune shifts.  The B' terms in (1) will give tune shifts.  If the 
gradient magnets have a field reduction, they will also have a gradient reduction so the 
tune is shifted 

∆ ν 
ν = ∆ B ' 

B ' 
= ∆ B 

B d 
 (8) 

Presumably gradients in the straight sections will give a result equivalent to (6), that is, a 
factor of R/ρ. 
The orbit length shift moves the orbit in the sextupoles without changing the momentum, 
so the beam has an effective momentum shift 

δ P 
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,  so  δν= − ξ c 
∆ B 
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where ξc is the chromaticity correction. 
 
Effect of Magnetic Shields 
 
 Bill Foster has raised the issue of enhanced betatron acceleration caused by the 
shielding around the beam pipe.  I do not believe this is important.  To estimate this, 
consider a transient current flowing in a conductor near and parallel to the beam pipe.  
The field from the conductor will cause some flux to link the beam path.  If a 
ferromagnetic core is placed around the beam and the conductor then the flux will 
increase by about µ times the flux in the region the core replaces.  If an air gap is 
introduced in the core, then the core field and flux will be reduced.  If the gap is 
increased  to almost the length of the original flux line L, the fractional increase in the 
field over the field without the iron is of order t/L where t is the thickness of the iron.  
Since the divergence of B is zero, the number of flux lines exiting any region equals the 
number entering it, so adding a thin shell of ferromagnetic material cannot greatly 
increase the flux linkage. 
 
What to do about it 
 
 Assuming that the mean orbit shift and the rms orbit shift are small, so that there 
is no scraping then the principal effect of the fields is the dilution of longitudinal 
emittance because of the frequency shift of the beam. There are several ways to correct 
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this, both depending on a measure of the mean orbit position shift.  In the first place, one 
can consider using dipole correction elements to cancel the mean orbit shift.  This would 
be a feedback arrangement, and has the usual problems of loop gain and stability.  
Alternatively, a learning mode program could be used to generate a ramp to be used.  
Instead, one might use the measured mean orbit shift to shift the frequency driving the 
barrier bucket pulses.  If it is determined that the tune shifts are a problem, then ramped 
quad correctors could be used to remove the tune shift. 


